
 
 

Nanoflower ZnO thin-film grown by hydrothermal technique
based Schottky diode

Ghusoon M. Ali†, Ahmed K. Khalid, and Salah M. Swadi

Electrical Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq

 

Abstract: This  paper reports  the realization of  planar Schottky diodes based on nanorod ZnO thin film.  The nanorod ZnO thin
film was fabricated by hydrothermal technique on boron doped p-type Si (100) substrate. The Ag//ZnO/Al planar diode operat-
ing  with  voltage bias  from –3  to  3  V.  The I–V characteristics  clearly  indicate  that  the  devices  have  rectifying performance.  The
thermionic  emission  theory  governs  the  current  across  the  studied  Schottky  diode.  The  device  achieved  a  turn-on  voltage  of
0.9 V, barrier height 0.69 eV and saturation current of 1.2 × 10–6 A. The diode shows a very large ideality factor (n > > 2) which is
attributed to high interface trap concentration. The surface topology was investigated by scanning electron microscope (SEM).
The structural properties of the nanostructured ZnO thin film were characterized by X-ray diffraction (XRD). The SEM images re-
veal  that  the ZnO nanorods grow perpendicular  to the substrate with uniformity and high density.  The XRD pattern illustrates
the dominant peak appearing at (002).  This intense peak indicates the c-axis  orientated phase of the wurtzite ZnO structure.  It
demonstrates that the crystals grow uniformly perpendicular to the substrate surface in good agreement with the SEM images.
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1.  Introduction

Schottky  barrier  contact  is  one  of  the  two  categories  of
metal–semiconductor contact in solid-state electronics. These
two  categories  are  the  rectifying  junction  contact  (Schottky
barrier  contact),  and  the  non-rectifying  contact  (Ohmic  con-
tact). Both contact types, rectifying and non-rectifying, are re-
quired  to  realize  the  Schottky  diode[1].  Based  on  the  funda-
mental  Schottky  rule,  when  a  metal  and  semiconductor  con-
tact  is  formed,  the  rectifying  or  ohmic  behavior  of  the  junc-
tion is  determined by  the  metal  work  function and the semi-
conductor  electron  affinity[2].  Bulk  and  thin-film  Schottky  di-
odes  have  been  well  reported[3].  However,  high-performing
wide  bandgap  material  thin-film  Schottky  diodes  might  be  a
challenge[1, 3, 4].  One  wide  bandgap  material  that  attracts
great  interest  for  thin-film  Schottky  diodes  is  ZnO.  ZnO  is  an
attractive  compound  for  solid  state  semiconductor  devices
because  of  its  electronic,  piezoelectric  and  optical  characte-
ristics.  This  material  is  easy  to  synthesize,  environmentally
friendly,  cost-effective,  and  has  high  exciton  binding  energy
and  self-assembly  of  different  nanostructure  size  and
shapes[5–8].  ZnO  nanostructures  include  nanoparticles,  nanor-
ods,  nanowire,  nanorings,  nanoflakes,  nanocombs,  nano-
flowers,  nanosprings  and  nanobelts[8, 9].  Mead et  al.,
1965–1970,  reported  the  first  results  on  n-type  ZnO  Schottky
contacts[10, 11]. Since that time, ZnO-based Schottky diodes at-
tract the keen interest of many researchers. These studies util-
ized  different  metals  to fabricate  Schottky  contacts  to  ZnO,
such as gold, silver, palladium and platinum. All these metals,
regardless of their metal work functions, form a Schottky barri-

er  ranging from 0.6–0.8  eV on undoped ZnO.  In  other  words,
the  Schottky  barriers  do  not  correlate  to  the  differences
between metal work function values and semiconductor elec-
tron  affinities.  This  can  be  attributed  to  the  presence  of  the
interface  defect  states[3, 12].  ZnO  nanostructure-based  Schot-
tky diodes have been investigated considerably in prior stud-
ies[8, 12–15].  In  particular,  no  study  so  far,  to  our  knowledge,
has  reported  the fabrication  and  characterization  of  ZnO
nano-flower  structures  based  planar  Ag/ZnO/Al  Schottky  di-
ode.  Many  physical  and  chemical  growth  methods  are  used
to make nanostructure ZnO thin films. The physical and chem-
ical  methods  can  be  established  by  hydrothermal,  sol–gel,
metallic  zinc  oxidation,  thermal  evaporation,  RF  sputtering,
spray pyrolysis and others[14–16].

In  the  present  study,  we  investigate  nanorod  ZnO  thin
films-based  planar  Schottky  diodes.  The  nanorod  ZnO  were
grown  by  hydrothermal  technique.  The  nanorod  thin-film
structure  and  Schottky  diode  electrical  characteristics  were
studied.

2.  Experiment

An hydrothermal technique was carried out to grow ZnO
nanorod  films  on  boron  doped  p-type  silicon  (100)  sub-
strates.  The  thickness  of  the  substrate  is  about  380 μm  with
an average resistivity of 5 Ω·cm. The commercial silicon wafer
of  2  inches  was  cut  equally  into  four  quarters.  Subsequently,
the  substrates  were  cleaned  following  RC1  and  RC2  cleaning
protocol[14].

To  grow  ZnO  nanorod  films,  first  a  seed  layer  should  be
formed on a silicon substrate by the sol–gel method. The solu-
tion of the ZnO seed layer is prepared with 0.005 M zinc acet-
ate to dehydrate was liquefied in 20 mL isopropanol (C3H8O).
The  solution  was  stirred  for  180  min  at  50  °C.  The  resulting
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clear  transparent  solution was used to coat  the polished side
of  the  silicon  substrates.  The  solution  was  spin-coated  for
40 s at a rotational speed of 3000 rpm in ambient conditions.
Next, the coated substrates were pre-heated and post heated
for 3 min at 100 °C and for 1 h at 300 °C, respectively.

The  ZnO  nanorod  solution  was  prepared  by  dissolving
0.05  M  hexamethylenetetramine  (HMTA)  and  0.05  M  zinc  ni-
trate  hexahydrate  in  50  mL  deionized  water.  The  white  ZnO
nanorod  growth  solution  was  moved  into  a  sealed  Teflon-
lined  stainless-steel  autoclave.  The  covered  substrates  with
seed  layer  were  immersed  into  white  ZnO  nanorod  growth
solution  and  kept  in  a  closed  autoclave,  heated  for  6  h  at
90  °C  in  the  laboratory  oven.  Finally,  the  substrates  were
taken  out  from  the  solution  and  dried  at  room  temperatu-
re[17]. The ZnO nanorod realization is due to the reaction of hy-
droxyl  ions  from  thermal  degradation  HMTA  with  Zn2+ ions
as follows[17]
  (CH)N + HO ↔ HCHO + NH, (1)
 

NH + HO ↔ NH+
 +OH−

, (2)
 

OH− + Zn+ → ZnO + HO. (3)

The  selected  area  of  the  nanorod  ZnO  film  surface  was
metalized  by  the  masking  technique.  Masked  with  square
holes  of  (2  ×  1  mm2),  the  metallization  was  done  by  thermal
evaporation vacuum coating unit. Ag metal was used for Schot-
tky  contact  formation  and  Al  used  for  ohmic  contacts.  The
structure  is  a  planar  Schottky  diode  with  a  surface  channel
between  Ag  and  Al  with  a  length  of  200 μm.  The  electrode

thickness was estimated to be 200 nm.
The  crystalline  structures  of  the  resultant  films  were  ex-

amined  by  XRD  technique,  with  Cu  Kα  radiation  (λ =
1.5406  Å)  in  2θ ranging  from  20°  to  80°.  The  SEM  was  de-
ployed  to  show  the  film  surface  topology.  The I–V curves
were  carried  out  by  a  Keithley  semiconductor  characteriza-
tion  system  (Keithley,  SCS-4200)  for  applied  voltage  in  the
range  of  –3  to  3  V  at  room  temperature. Fig.  1 shows  the
block diagram of  the experimental  work. Fig.  2 illustrates  the
schematic  diagram  of  the  experimental  set-up,  and  the  en-
ergy diagram of the Schottky Ag/ZnO contact.

3.  Result and discussions

Fig. 3 shows the SEM images of nanorod ZnO thin films de-
posited  by  the  hydrothermal  technique.  Nanorod  synthesis
was  by  a  simple  solution-phase  synthesis  hydrothermal  de-
position  method.  The  figure  demonstrates  vertically  aligned
nanorods  combined  in  the  central  point.  The  ZnO  combined
nanorod  growth  produced  flower-shaped  ZnO  nanostruc-
tures perpendicular to the substrate. The nanorod structure is
a  one-dimensional  (1D)  structure  while  the  flower-like  ZnO
nanostructure is  a  three-dimensional  (3D) structure.  It  is  well-
known  that  the  1D  nanostructures  have  a  very  large  surface
area/volume ratio that raises the sensing performance in elec-
tronic  devices.  Still,  there  are  some  disadvantages  to  the  1D
nanostructures regarding reliability and stability. The 3D nano-
structures  assembled  by  1D  nanostructure-based  electronic
sensing devices  are  more reliable  and stable.  In  recent  times,
the assembly of 3D by 1D nanostructure units has been an at-
tractive research area,  however,  little research has been done
to  study  the  effect  of  size  controllable  units  on  electronic
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Fig. 1. The block diagram of the experimental work.

2 Journal of Semiconductors      doi: 10.1088/1674-4926/41/10/102103

 

 
G M Ali et al.: Nanoflower ZnO thin-film grown by hydrothermal technique ......

 



device performances[18].  Hence, the diameter of the hexagon-
al  cross-section  ZnO  nanorods  of  about  125  nm  create  a
flower  with  nanostructure  diameter  of  4 μm.  The  1D  nanor-
ods  and  3D  nanoflower  structures  provide  remarkable  optic-
al  and  electronic  applications  due  to  quantum  confinement
behavior.

The XRD patterns of the ZnO films grown on a silicon sub-
strate  by  the  hydrothermal  method  shown  in Fig.  4 at  2θ
from 20° to 80°. Fig. 4 shows the dominant peak appearing at
(002).  This  intense  peak  indicates  a c-axis  orientation  of  the
wurtzite  structure.  It  is  demonstrated  that  the  crystals  grow
uniformly perpendicular to the substrate surface in good agree-
ment  with  the  SEM  images.  The  other  smaller  peaks  corres-
pond  to  the  (100),  (101)  and  (102)  planes  of  the  hexagonal
wurtzite  ZnO  thin  film.  This  concludes  that  the  hydrotherm-
ally  grown  ZnO  film  is  a  polycrystalline  crystal  structure  with
preferred (002) orientation. The FWHM of a hydrothermal film
of dominant peak (002) at 34.3º is estimated to be 0.14º.

The measured current–voltage plots of Ag/ZnO/Al planar
diode  at  room  ambient  temperature  presented  a  rectifying
behavior, as shown in Fig. 5. The current across a Schottky bar-
rier is described according to the thermionic emission expres-
sion[2]: 

I = [AA∗Texp (−qϕB
kT

)] [exp ( qV
nkT

) − ] , (4)

where A is  the  contact  area  of  the  fabricated  planar  diode
that  equals  ~  0.16  cm2, T is  the  temperature  in  Kelvin, q is
the  electron  charge, A*  is  the  effective  Richardson  constant
(A* =  4πme

*qk2/h3)  of  ZnO,  which  is  about  32  A·cm–2·K–2 for
me

* =  0.27m0, V is  the  applied  bias  voltage, n is  the  ideality
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Fig. 2. (Color online) (a) The schematic diagram of the experimental set-up. (b) The energy diagram of Schottky Ag/ZnO contact.
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Fig. 3. SEM of nanostructured ZnO thin films coated by hydrothermal technique. (a) Single nano-flower. (b) Multi nano-flowers.
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Fig.  4.  XRD  pattern  of  ZnO  thin  films  coated  by  hydrothermal  tech-
nique.

Journal of Semiconductors      doi: 10.1088/1674-4926/41/10/102103 3

 

 
G M Ali et al.: Nanoflower ZnO thin-film grown by hydrothermal technique ......

 



factor, ϕB is  the  barrier  height  and k is  the  Boltzmann  con-
stant.

To  confirm  the  repeatability  of  the  measured  data,  the
I–V characteristics were carried out for many samples from dif-
ferent  fabricated  batches.  The  error  bars  in Fig.  5,  demon-
strate  the  variance  in  the  current  measurements  for  given
applied  voltage,  represented  by  vertical  lines.  Based  on  the
I–V curve shown in Fig. 5 and Eq. (4),  the device performance
parameters  were  estimated.  From  forward  current  for  ap-
plied  voltage  larger  than  3kT/q,  the  value  of  the  saturation
current  (IS)  was  extracted  by  extrapolating  the  linear  region
of  the  ln I versus V plot  to  zero  voltage.  The  value  of  the  sa-
turation  current  is  found  to  be  1.2  ×  10–6 A.  The  saturation
current  values  were  used  to  estimate  the  barrier  height,
ϕB =  (kT/q)ln(AA*T2/IS).  The  computed  barrier  height  values
are  0.6908  eV.  The  rectification  ratio  at  +3/–3  V  is  23.  The
turn-on  voltages  are  determined  as  0.4  V.  The  device  exhi-
bits  a  very large ideality  factor  (n > > 2)  which means that  the
measured  forward  current  is  much  smaller  than  that  com-
puted  theoretically  by  thermionic  emission.  This  is  due  to
high  interface  trap  concentration[19, 20].  The  extracted  para-
meters  are  generally  in  a  good  agreement  with  those  deter-
mined  previously  for  planar  nanostructured  ZnO  Schottky
diode[13, 14].

4.  Conclusion

This  study  presents  ZnO  thin  film  nanoflower  com-
pounds of nanorod structure were deposited by hydrotherm-
al  technique.  The  deposited  ZnO  films  exhibit  a c-axis  with
(002) orientation of the polycrystalline wurtzite structure. The
resultant  nanostructured ZnO thin  film is  utilized to  fabricate
the planar Ag/ZnO/Al Schottky junction. The electrical charac-
teristic  of  the  as  fabricated  diodes  extracted  from  the I–V
curves at room ambient temperature. The devices show rectify-
ing behavior. The parameters such as the rectifying ratio, ideal-
ity  factor,  barrier  height  and  reverse-bias  leakage  current  are
extracted  from  measured  data.  The  study  also  revealed  that
the magnitude of  the ideality  factor  was estimated to be sig-
nificantly  higher  for  all  fabricated  devices  attributed  to  high
interface trap concentrations. This work revealed that cost-ef-
fective undoped ZnO nanoflower film Schottky diodes can be
deployed in sensors applications.
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